Chem 30 Diploma Exam Review Questions

Energy Unit

1. In a calorimetry experiment, 4.00 g of potassium iodide was added to 150 mL of water. If the temperature decreased by 8.70°C, calculate the molar enthalpy of solution for potassium iodide.

+/- ____kJ/mol

2. A student supplied the following four metals with the same amount of energy. The initial temperature of each metal was 20.0 °C and the mass of each metal piece was 1.00 g.

1. Iron	Rank the metals from greatest to least in terms of final temperature reached.
2. Tin	
3. Copper	
4. Aluminum	Greatest Least

Use the following for the next question.

A student combined a 50.0 mL of 1.0 mol/L NaOH solution with 50.0 mL of 1.0 mol/L HCl solution during a neutralization calorimetry experiment. The change in temperature recorded was 15.0°C.

3. Using the information above determine the enthalpy of neutralization of HCl_{(aq).} Express your answer as **a.bc** x 10^d kJ/mol

_____kJ/mol

- 4. What mass of aluminium oxide will be formed from its elements when the enthalpy change is 3.00x10³ kJ?
- 5. Determine the enthalpy of combustion when 10.0 g of methane is combusted. The molar enthalpy of combustion for methane is 802.5 kJ/mol.

+/- _____kJ

6. a. Calculate the enthalpy of reaction for:

$$\mathbf{I.} \operatorname{CO}(g) + \operatorname{3} \operatorname{H}_2(g) \rightarrow \operatorname{CH}_4(g) + \operatorname{H}_2\operatorname{O}(g)$$

Evidence:	
II. $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$	H = -810.5 kJ
III. 2 $H_2(g) + O_2(g) \rightarrow 2 H_2O(g)$	H = +433.7 kJ
$\mathbf{IV.} \operatorname{CO}\left(g\right) + \operatorname{H}_{2}\left(g\right) + \operatorname{O}_{2}\left(g\right) \xrightarrow{\bullet} \operatorname{CO}_{2}\left(g\right) + \operatorname{H}_{2}\operatorname{O}\left(g\right)$	H = -574.8 kJ

+/-

b. Using reaction III, what mass of hydrogen would be required to produce 1000 kJ of energy?

7. a. Determine the molar enthalpy of combustion for butane.

b. Draw a potential energy diagram for the combustion of two moles of butane **and** write the reaction including the energy value as part of the reaction.

Use the following information to answer the next two questions.

Air bags are designed to deploy when a car moving in excess of 18 km/h undergoes a sudden decrease in speed. During the deceleration, an electrical circuit ignites a small amount of explosive powder to cause sodium azide, NaN_{3(s)} to react inside the air bag. The sodium azide rapidly **decomposes**, producing nitrogen gas, which fills the bag. The equation for this reaction is $2NaN_{3(s)} \rightarrow 3N_{2(g)} + 2Na_{(s)} + 43.5 \text{ kJ}$

8. The decomposition of sodium azide is an <u>*i*</u> and has a <u>*ii*</u> Δ H value.

	i	ü
A.	endothermic	positive
B.	endothermic	negative
C.	exothermic	positive
D.	exothermic	negative

9. The molar heat of formation of sodium azide is

A. -43.5 kJ/mol

C. +21.8 kJ/mol

D. +43.5 kJ/mol

Use the following information to answer the **next** question.

B. -21.8 kJ/mol

Large amounts of ammonia are used in the production of nitric acid, $HNO_{3(aq)}$. One step in the production of nitric acid is represented by the equation

$$4 \text{ NH}_{3(g)} + 5 \text{ O}_{2(g)} \rightarrow 4 \text{ NO}_{(g)} + 6 \text{ H}_2\text{O}_{(g)}$$

10. For the reaction equation, the enthalpy change is <u>i</u> kJ because the energy absorbed when the bonds of the reactants are broken is <u>ii</u> than the energy <u>ii</u> when the bonds of the products are formed.

	i	ii	iii
A.	+902.0	less	absorbed
B.	-902.0	less	released
C.	+902.0	greater	absorbed
D.	-902.0	greater	released

11. Which compound is "energetically" the most stable?A. MethaneB. ethaneC. propaneD. butane

Use the following information to answer the **next** question.

Cancarb Ltd., a company located in Medicine Hat, produces high-quality carbon through the thermal decomposition of natural gas. The natural gas is heated in the absence of oxygen to 1300°C in a reaction chamber. The reaction is represented by the equation: $CH_{4(g)} \rightarrow C_{(s)} + 2 H_{2(g)}$

12. In this decomposition, the _____i have more _____ii ____energy than the _____iii ____.

	i	ii	iii
A.	Reactants	Potential	Products
B.	Products	Potential	Reactants
C.	Reactants	Kinetic	Products
D.	Products	Kinetic	Reactants

Use the following information to answer the **next** question

13. The activation energy (E_a) of the reverse reaction is labelled i _____ and the activation energy value for the forward reaction is labelled _____ii ___ and the enthalpy change for the reverse reaction is _____iii___

	i	ii	iii
A .	В	Α	+ C
B .	В	Α	- C
C.	Α	В	+ C
D.	Α	В	- C

Use the following information to answer the **next** question.

 $4 \text{ HNO}_{3(aq)} + 5 \text{ N}_2\text{H}_{4(l)} \rightarrow 7 \text{ N}_{2(g)} + 12 \text{ H}_2\text{O}_{(g)} \qquad \Delta \text{H} = -2462.0 \text{ kJ}$

14. The molar enthalpy of reaction for nitrogen is _____i and is the energy ____ii ____ per mole of nitrogen formed.

	i	ii
A.	-351.7 kJ/mol	Released
B.	+351.7 kJ/mol	Absorbed
C.	0 kJ/mol	Absorbed
D.	0 kJ/mol	Released

Use the following information to answer the **next** question

Cold packs are used to treat sprains and bruises. A chemical commonly used in cold packs is ammonium nitrate, NH₄NO_{3(s)}, which can produce a cooling effect.

15. The change that occurs in this cold pack is an <u>i</u> change, which results in a(n) <u>ii</u> in the *iii* energy of the system.

	i	ü	iii
A.	endothermic	increase	potential
B.	exothermic	increase	potential
C.	endothermic	decrease	kinetic
D.	exothermic	decrease	kinetic

Use the following information to answer the **next** question.

Г

A student performed a calorimetry experiment and recorded the following data.		
Mass of aluminum calorimeter	470.0 g	
Mass of calorimeter water	100.0 g	
Initial temperature of calorimeter water	23.0 °C	
Mass of solid added to calorimeter	5.00 g	
Final temperature of calorimeter water	24.6 °C	

16. Determine the enthalpy of solution (dissolving) +/-____ kJ. (Record your answer to three digits)

Use the following information to answer the **next** question.

One component of acid rain can be formed in the atmosphere by the reaction: $SO_{3(g)} + H_2O_{(1)} \rightarrow H_2SO_{4(aq)} + 227.8 \text{ kJ}.$

- 17. The molar heat of formation of H₂SO_{4(aq)} in the atmosphere is, under standard conditions, is a. -453.7 kJ/mol b. -586.7 kJ/mol c. -814.0 kJ/mol d. -909.3 kJ/mol
- 18. If the equation $2 \text{ A} + \text{B} \rightarrow \text{C} + 2\text{D} + 57.0 \text{ kJ}$ was rewritten such that the energy term had a value of 171 kJ the balancing coefficients for the equation would be _____, ____, ____ and _____.

Use the following information to answer the **next** question.

		Calorimetry Experiment Data	
	1.	Mass change of ethanol	
	2.	Mass of aluminium calorimeter	
	3.	Mass of aluminium calorimeter and water	
	4.	Initial temperature of aluminium calorimeter	
	5.	Maximum temperature change of ethanol	
	6.	Maximum temperature change of aluminium calorimeter and water	
19	The	Calorimetry experiment data required to determine the molar enthalpy of combustion of ethan and	ol are

20. The energy released when 0.500 mol of AgI(s) is formed from its elements is _____kJ.

Use the following information to answer the **next** question.

$C_{3}H_{6}(g) + 4.5 O_{2}(g) \rightarrow 3 CO_{2}(g) + 3 H_{2}O(l)$	$\Delta H^{o} = -1959.2 \text{ kJ}$
$C(s) + O_2(g) \rightarrow CO_2(g)$	$\Delta H^{o} = -393.5 \text{ kJ}$
2 H ₂ (g) + O ₂ (g) → 2 H ₂ O (l)	$\Delta H^{o} = -571.6 \text{ kJ}$

21. The molar enthalpy of formation of cyclopropane, $3 C (s) + 3 H_2 (g) \rightarrow C_3 H_6 (g)$, is +/-_____kJ.

Organic Unit

1. The formula that represents an alkene is ______ and the formula that represents an alkyne is ______ ii____.

	i	ii
A.	$C_{6}H_{12}$	$C_{6}H_{10}$
B.	$C_{6}H_{12}$	C ₆ H ₁₄
C.	$C_{6}H_{10}$	C ₆ H ₁₂
D.	$C_{6}H_{10}$	C ₆ H ₁₄

2. When butane undergoes a reaction with chlorine gas, the organic product is _____ in this _____ ii ____ reaction.

	i	ii
Α.	dichlorobutane	Addition
В.	dichlorobutane	Substitution
C.	chlorobutane	Addition
D.	chlorobutane	Substitution

3. The name of the compound prepared from the ____i ___ reaction of water and ethene is _____i

	i	ii
A.	Addition	Ethanol
B.	Elimination	Ethanol
C.	Addition	Ethanoic acid
D.	elimination	Ethanoic acid

4. Use the following information to answer the next question

The name of the substance labelled I is	 (Record in the $1^{st t}$ box)
The above reaction can be classified as a(n)	 (Record in the 2^{ndt} box)
The substance labelled III can be classified as a(n)	 (Record in the 3^{rd} box)
The name of the substance labelled III is	(Record in the 4^{th} box)

5. Use the following information to answer the **next** question

The molecule $C_2H_5OH(1)$ can be used as a fuel additive or on its own as a fuel. It results in cleaner burning engines and less environmentally harmful emissions.

The coefficients for the balanced complete combustion reaction for the molecule above is

$C_2H_5OH(l)$	(record answer in 1 st box)
$O_2(g)$	(record answer in 2 nd box)
$CO_2(g)$	(record answer in 3 rd box)
$H_2O(g)$	(record answer in 4 th box)

6. CH₃CH₂COOCH₃ belongs to the functional group

- A. Carboxylic acids
- B. Esters
- C. Alcohols
- D. Aromatics

7. Use the following information to answer the **next** question

The IUPAC names for two organic molecules are hept-2-ene and but-2-ene.				
Descriptions				
1	Saturated	6	Alkanes	
2	Unsaturated	7	Alkenes	
3	Cyclic	8	Contains only single bonds	
4	Aliphatic	9	Contains single and double bonds	
5	Aromatic		-	

٦

Numerical Response 3.

.

The descriptions numbered above that apply to both hept-2-ene and but-2-ene are _____, ____, and

- 8. Which of the following is the correct name for the compound shown below?
 - A. 6-ethyl-2-methylhept-3-yne
 - B. 2-ethyl-6-methylhept-4-yne
 - C. 3,7-dimethyloct-5-yne
 - D. 2,6-dimethyloct-3-yne

9. Which of the following molecules represents 1,3-dimethylbenzene?

(b)

10. Polyvinyl alcohol has the following structure.

$$OH OH OH OH$$

 $| | |$
 $\cdots - CH_2 - CH - CH_2 - CH - CH_2 - CH - \cdots$

What is the monomer that is used to form this polymer?

(a)
$$HO - CH_2 - CH_3$$
 (b) $HO - CH_2 - CH_3$
(c) $HO - CH = CH_2$ (d) $HC - CH_3$

Use the following information to answer the **next** question.

11. The functional group present in the given structure is _____i and the parent chain is _____ carbons long.

	1	ii
A.	Carboxyl	5
B.	Carboxyl	4
C.	Hydroxyl	5
D.	Hydroxyl	4

Use the following information to answer the **next** question.

In an experiment, cyclohexanol is treated with phosphoric acid at a temperature of $110^{\circ}C - 160^{\circ}C$. In this process, a compound 'x' and a water molecule are produced.

	12. The product formed during this	i	reaction is	ii	
	i			ii	
A.	Cracking		Hexene		
B.	Cracking		Cylcohexene		
C.	Elimination		Hexene		
D.	Elimination		Cylcohexene		

13. Use the following information to answer the next question

The seven-carbon structures numbered above that are isomers of the structural formula that the student drew are _____, ____, and _____.

- 14. Which line diagrams above represent organic compounds that are structural isomers?
- A. I and II only B. I, II, III, and IV C. II and III only D. III and IV only

15. Use the following information to answer the **next** question.

	Compoun	ds	
	CH ₃ COOH(l)	5 CH ₃ OH(l)	
,	2 $CoCl_2(s)$	6 $CaCO_3(s)$	
,	$3 CH_2CH_2(g)$	7 $SiC(s)$	
4	$4 CHCl_3(s)$	8 NaCN(s)	

The compounds numbered above that can be classified as organic compounds are _____, ____, and

Toluene is an industrial solvent for glues that can be converted to a powerful explosive (TNT, trinitrotoluene).

16. Based on the structure of toluene, it can be classified as an ___i ___ hydrocarbon and the IUPAC name for toluene is ____ii___

	i	ii
A.	Alkene	Methyl benzene
B.	Aromatic	Methyl benzene
C.	Alkene	Phenyl methane
D.	Aromatic	Phenyl methane

Use the following information to answer the next question

17. The name of this molecule is

- A. 2-ethylbutene
- B. 2-ethylpent-1-ene
- C. 3-propylbut-3-ene
- D. 2-methylpent-2-ene

18. Use the following information to answer the next question

The hydrocarbon industry is the driving force behind the Alberta economy. To process crude oil, fractional distillation is used. This process separates the crude oil into its different parts.

Given the following molecules, identify the order at which the molecules would be removed from the fractional distillation tower.

 $1. \ CH_4 \quad 2. \ C_{15}H_{32} \quad 3. \ C_{25}H_{52} \quad 4. \ C_8H_{18}$

Height of Removal from Tower

Lowest	(Record in the 1^{st} box)
2 nd lowest	(Record in the 2^{nd} box)
3 rd lowest	(Record in the 3^{rd} box)
Highest	(Record in the 4 th box)

19. Use the following information to answer the **next** question

Photosynthesis is the main route that energy from the sun enters the food web. Some of the energy that is stored by photosynthesis can be released through the process of combustion.

Photosynthesis $\underline{i} + \underline{ii} \rightarrow C_6H_{12}O_6(s) + O_2(g)$ Complete Hydrocarbon Combustion $C_3H_8(g) + O_2(g) \rightarrow \underline{iii} + \underline{iv}$ Possible Reactants and Products 1. $CO_2(g)$ 2. $H_2O(1)$ 3. $C_6H_{12}O_6(s)$ 4. $H_2O(g)$ 5. $O_2(g)$ 6. $H_2(g)$

Identify the chemicals needed to complete the reactions given above.

i ii iii iv

Given the following:

- 1. 2-methylcyclobut-1-ene
- 2. 5-methylhept-1-yne
- 3. 2,2-dimethylhexane
- 4. cycloheptane

20. The organic compound numbered above that is

21. Use the following information to answer the next question

Match four of the organic compounds numbered above with their classifications below. (There is more than one correct answer combinaton)

Alkyne	(box 1)
Alcohol	(box 2)
Aromatic	(box 3)
Unsaturated hydrocarbon	(box 4)

22. Use the following information to answer the next question

<u> </u>	
	Organic Compounds
1.	Alkanes
2.	Alkenes
3.	Alkynes
	*

Use the terms numbered above to answer the descriptions about the substances when they contain the same number of carbon atoms.

(you may use a number more than once)

The compound with the highest boiling point	(box 1)
The most reactive compound	(box 2)
The compound with the lowest boiling point	(box 3)
The least reactive compound	(box 4)

Electrochemistry

1. A number of reactions between four metals and their corresponding positive ions were attempted. Using the results below develop a reduction half reaction table.

 $In_{(s)} + La^{+3}{}_{(aq)} \rightarrow In^{+3}{}_{(aq)} + La_{(s)} \text{ Non-spon.}$ $Np_{(s)} + La^{+3}{}_{(aq)} \rightarrow Np^{+3}{}_{(aq)} + La_{(s)} \text{ Spon.}$ $Np_{(s)} + Nd^{+3}{}_{(aq)} \rightarrow Np^{+3}{}_{(aq)} + Nd_{(s)} \text{ Spon.}$ $La_{(s)} + Nd^{+3}{}_{(aq)} \rightarrow La^{+3}{}_{(aq)} + Nd_{(s)} \text{ Non-spon.}$

- 2. Balance the following reaction by devising your own half reactions. (Assume acidic solution)
 - $Cu + NO_3^- \rightarrow Cu^{+2} + NO_2$

3. Balance the following reaction using oxidation numbers.

 $\mathrm{As_2O_{3(s)}+Cl_{2(g)}+H_2O_{(l)}} \twoheadrightarrow \mathrm{H_3AsO_{4(aq)}+HCl_{(aq)}}$

4. Calculate the concentration of the hydrogen peroxide based on the following data.

Experimental design: A 15.0 mL sample of acidified unknown hydrogen peroxide solution was titrated with a standardized solution of potassium dichromate that has a concentration of 0.0500 mol/L.

Evidence: The volume of potassium dichromate required to react 15.0 mL of hydrogen peroxide solution.

Trial	1	2	3	4
Final volume (mL)	13.9	26.3	38.8	13.1
Initial volume (mL)	0.4	13.9	26.3	0.8
Volume used (mL)	13.5	12.4	12.5	12.3

Use the information to answer the following question.

Sulfur reacts with oxygen in a redox reaction to a variety of compounds:

 S_2O_3 SO_2

 SO_3

 S_2O_7

Which of the following correctly lists the compounds from lowest to highest oxidation number of sulfur? 5.

 $S_2O_3 < SO_2 < SO_3 < S_2O_7$ c. $S_2O_7 < SO_2 < S_2O_3 < SO_3$ a. $SO_2 < SO_3 < S_2O_3 < S_2O_7$ d. $SO_3 < S_2O_3 < S_2O_4 < SO_2$ b.

6. When hydrogen gas is passed over nickel oxide, NiO(s), the latter is converted into nickel.

 $NiO(g) + H_2(g) \rightarrow Ni(g) + H_2O(l)$

What happens to the nickel in this reaction?

Displacement a.

Disproportionation C.

Oxidation b.

d. Reduction

Consider a redox reaction: $Cu(s) + NO_3(aq) \rightarrow Cu^{2+}(aq) + NO(g)$ (acidic medium)

- 7. The balanced form of the above equation is
- $Cu(s) + NO_3(aq) + H^+(aq) \rightarrow Cu^{2+}(aq) + NO(g) + H_2O(g)$ a.
- $2Cu(s) + NO_3(aq) + 8H^+(aq) \rightarrow 2Cu^{2+}(aq) + NO(g) + 6H_2O(g)$ b.
- $3Cu(s) + 2NO_3^{-}(aq) + 8H^{+}(aq) \rightarrow 3Cu^{2+}(aq) + 2NO(g) + 4H_2O(g)$ c.
- $Cu(s) + NO_3(aq) + 2H^+(aq) \rightarrow Cu^{2+}(aq) + 2NO(g) + H_2O(g)$ d.

Use the following information to answer the next question

Four atoms, Z, T, X, and R, form diatomic molecular elements and negative ions. The following observations are made:
$Z_2 + 2X^- \rightarrow 2Z^- + X_2$
$T_2 + 2R^2 \rightarrow$ no reaction
$X_2 + 2R^2 \rightarrow 2X^2 + R_2$
1. X_2
2. R_2
$3. 7_{2}$
$\frac{1}{4}$ T ₂
•• • • 2

- When the elements are arranged in order of most reactive to least reactive, the list is 8.
- Which of the following industrial processes could **NOT** be classified as an oxidation-reduction reaction? 9.
 - $2NaCl_{(s)} \rightarrow 2Na_{(s)} + Cl_{2(g)}$ a.
 - b. $CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)}$
 - c. $HCl_{(aq)} + NaOH_{(aq)} \rightarrow NaCl_{(aq)} + H_2O_{(l)}$
 - d. $Pb_{(s)} + PbO_{2(s)} + 2H_2SO_{4(aq)} \rightarrow 2PbSO_{4(s)} + 2H_2O_{(l)}$
- 10. The net ionic equation representing the reaction between chlorine gas and aqueous sodium iodide is
 - a. $2Cl_{(aq)} + I_{2(s)} \rightarrow Cl_{2(g)} + 2I_{(aq)}$
 - b. $Na^{+}_{(aq)} + Cl_{2(g)} \rightarrow Na_{(s)} + 2Cl_{(aq)}$

 - c. $Cl_{2(g)} + 2I_{(aq)} \rightarrow 2Cl_{(aq)} + I_{2(s)}$ d. $Na_{(aq)}^+ + I_{2(s)} + 2Cl_{(aq)}^- \rightarrow Na_{(s)} + 2I_{(aq)}^- + Cl_{2(g)}$

Use the following information to answer the **next** question.

	$R^{+}_{(aq)}$	$G^{+}_{(aq)}$	$X^+_{(aq)}$
R _(s)		\checkmark	Х
G _(s)	Х		Х
$X_{(s)}$	\checkmark	\checkmark	
X = no reaction			
= spontaneous reaction			
= not performed			

11. The strongest reducing agent is

a. $X^+_{(aq)}$ b. $X_{(s)}$ c. $G^+_{(aq)}$ d. $G_{(s)}$

12. Students tried the following combination of reactants in a laboratory. Which combination is expected to be non-spontaneous?

a. H2(g) + Ag+(aq) b. Cr(s) + Sn2+(aq) c. Ba(s) + Fe2+(aq) d. Al(s) + Ca2+(aq)

13. Draw a voltaic cell using the half cell Ni_(s)/Ni⁺² (aq)//.Choose anything else for the other half cell as long as the net voltage is greater then 1.00 V. All lab material is available.

• Label the anode, cathode, electron flow and ion flow. Show half-reactions, net reaction and the E^o_{net} cell.

Use the following information to answer the next question.

Properties

- 1. Reacts spontaneously with $Cu^{2+}_{(aq)}$
- 2. Reacts spontaneously with $Cl_{(aq)}$
- 3. Is an oxidizing agent and reducing agent
- 4. Is reduced by hydrogen gas
- 5. Reacts spontaneously with $H_2O_{(1)}$
- 6. Reacts spontaneously with $Ag_{(s)}$
- 7. Is an inert electrode

14. Match each of the following species with its most appropriate property.

$H_2O_{(l)}$	
$Zn_{(s)}$	
$\mathrm{Sn}^{4+}_{(aq)}$	
C _(s)	

- 15. If the scale for electrode potentials is change so that the reduction of Ni⁺²_(aq) + 2 e- → Ni_(s) is 0.00 V, the electrode potential for the reduction of Br_{2(l)} will be
 a. 0.26 V
 b. 0.81 V
 c. 1.07 V
 d. 1.33 V
- 16. If the lithium reduction half-reaction, $\text{Li}^+_{(aq)} + e^- \rightarrow \text{Li}_{(s)}$, has been assigned an E° value of 0.00 V, the predicted E°_{net} value for the reaction $\text{Cu}_{(s)} + \text{Zn}^{2+}_{(aq)} \rightarrow \text{Cu}^{2+}_{(aq)} + \text{Zn}_{(s)}$ would be

A. +3.38 V B. -2.28 V C. -0.42 V D. -1.10 V

- 17. A common voltaic cell may have the notation: Zn(s) / ZnSO4(aq) // Pb(NO3)2(aq) / Pb(s). The voltage generated by this cell is
 - a. 0.40 V
 - b. 0.63 V
 - c. 0.76 V
 - d. 0.89 V

18. In an electrochemical cell, the cathode is the electrode at which electrons ______ the half-cell and takes place.

- a. leave, oxidation
- b. leave, reduction
- c. enter, oxidation
- d. enter, reduction
- 19. Silver plating or ornaments or utensils is done by electrolysis of a soluble silver compound. The object to be plated is placed at one of the electrodes. If 10.8 g of silver is to be deposited, how long will it take to plate the object using the electron flow of 0.500 A?
 - a. 10.7 h
 - b. 5.37 h
 - c. 2.68 h
 - d. 1.34 h

20. Use the numbers that identify the parts of the electroplating cell in the diagram above to complete the statements below.

The anode is identified by	
The electron movement is identified by	
The anion movement is identified by	
The cation is identified by	

Use the following information to answer the **next two** questions.

Phosphine gas, $PH_{3(g)}$, is used to produce a flame retardant for battling forest fires. Phosphine gas is produced in the following balanced reaction.

1.
$$P_{4(s)} + 12 H_2O_{(l)} \rightarrow 5 PH_{3(g)} + 3 H_3PO_{4(aq)}$$

21. Which of the following statements is true?

- A. Phosphorus atoms only undergo oxidation.
- B. Phosphorus atoms only undergo reduction.
- C. Phosphorus atoms undergo disproportionation
- D. The reaction is not a reduction/oxidation reaction.

22. The half reaction representing the process responsible for the corrosion of unprotected iron metal is <u>i</u>. Attaching a sacrificial anode made of <u>ii</u> would help to protect the iron from corrosion.

	i	ii
А.	$2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	Cr(s)
В.	$O_2(g) + 2H_2O(l) + 4e^- \rightarrow 4OH^-(aq)$	Cr(s)
С.	$2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	Sn(s)
D.	$O_2(g) + 2H_2O(l) + 4e^- \rightarrow 4OH^-(aq)$	Sn(s)

Use the following information to answer the **next** question.

23. Select the row that correctly describes the theoretical effects of replacing the Cu(s) electrode with the C(s) electrode.

ROW	Direction of	E° _{Cell} value	Anode of
	<i>e</i> ⁻ flow		the Cell
А.	No Change	Increases	C(s)
B.	No Change	No Change	Cd(s)
C.	Reversed	Increases	C(s)
D.	Reversed	No Change	Cd(s)

A nickel-cadmium, or NiCad, battery has a long active-life and a long shelf-life, but is more expensive to produce than an alkaline battery. The discharging battery has an electrical potential of 1.20 V. The pertinent half-reactions are:

anode:
$$\operatorname{Cd}_{(s)} + 2 \operatorname{OH}_{(aq)} \rightarrow \operatorname{Cd}(\operatorname{OH})_{2(aq)} + 2 e^{-1}$$

cathode: $\operatorname{NiOOH}_{(s)} + \operatorname{H}_2\operatorname{O}_{(l)} + e^{-1} \rightarrow \operatorname{Ni}(\operatorname{OH})_{2(aq)} + \operatorname{OH}_{(aq)}^{-1}$ $\operatorname{E}_r^{\circ} = -0.49 \operatorname{V}$

24. The reduction potential for anode half-cell is;

A. - 1.69 V B. - 0.71 V C. + 0.71 V D. + 1.69 V

Use the following information to answer the **next** question.

In a car engine, $NO_{(g)}$ can form. Once released into the air, $NO_{(g)}$ can react with oxygen and water to produce acid rain.

25. The oxidation numbers for nitrogen in the order given are;

Use the following information to answer the **next** question.

Galvanizing, a process used to prevent corrosion, involves coating iron metal with a thin layer of zinc metal.

Iron nails can be galvanized using an electrolytic process. The nails to be galvanized would be attached to the _____i where _____ii___ occurs.

	i	ü
А.	Cathode	Reduction
<i>B</i> .	Anode	Oxidation
С.	Anode	Reduction
<i>D</i> .	Cathode	Oxidation

- 27. A galvanized nail was placed in a copper (II) sulfate solution. After a day, the blue colour of the solution disappeared and copper metal was produced. The procedure was repeated with objects made of other metals. Similar results would **not** be predicted for;
- A. an uncoated iron nail B. a gold plated bracelet

C. a chromium plated spoon D. a nickel plated coin

Use the following information to answer the next question

- 28. The half reaction that occurs at the anode of this cell is; A. $PbO_{2(s)} + SO_{4^{-}(aq)} + 4H^{+}_{(aq)} + 2e^{-} \rightarrow PbSO_{4(s)} + 2H_2O_{(l)}$
- B. $\mathrm{SO_4}^{2-}_{(aq)} + 4\mathrm{H}^+_{(aq)} + 2\mathrm{e}^- \rightarrow \mathrm{H_2SO_{3(aq)}} + \mathrm{H_2O_{(l)}}$
- C. $Pb_{(s)} + SO_4^{2-}(aq) \rightarrow PbSO_{4(s)} + 2e^{-1}$
- D. $Pb_{(s)} \rightarrow Pb^{2+}_{(aq)} + 2e^{-}$
- 29. When the skeletal equation $Br_2 \rightarrow BrO_3^-$ is balanced in acidic conditions, $H_2O_{(1)}$, $H^+_{(aq)}$ and e^- will appear. Which of the following are the correct balancing coefficients?

	H ₂ O	H^+	e-
A.	3	3	2
B.	6	6	4
C.	6	6	5
D.	6	12	10

30. What products result from the electrolysis of molten KBr?

ROW	Product at the cathode	Product at the anode
A.	K	O ₂
В.	К	Br ₂
C.	O ₂	H ₂
D.	Br ₂	K

Use the following information to answer the next question

Under certain circumstances the acidified potassium chlorate undergoes disproportionation to form potassium chloride and potassium perchlorate, as shown in the following **unbalanced equation**. $\underline{\qquad} KClO_3 (aq) \rightarrow \underline{\qquad} KCl (aq) + \underline{\qquad} KClO_4 (aq)$

33. When the equation is balanced using whole number coefficients, the

 Coefficient for KClO3 is

 Coefficient for KClO4 is

 Number of electrons transferred is

Acid-Base Equilibrium Unit

1. Analysis of the equilibrium $2NOCl(g) \leftrightarrow 2NO(g) + Cl_2(g)$ gave the following information:

 $\begin{array}{l} [NOCl] &= 0.500 \; mol/L \\ [NO] &= 2.00 \times 10^{-2} \; mol/L \\ [Cl_2] &= 1.00 \times 10^{-2} \; mol/L \end{array}$

What is the value for K_C for this system?

Record your answer in the format of a.bc $x10^{-d}$

Use the following information to answer the next question.

The unique flavour of fruits and berries is due to the presence of esters, chemical compounds that are easily synthesized in the lab. For example, ethyl propanoate is responsible for the flavour characteristic to pineapple. It is produced by the reaction:

 $C_2H_5OH_{(1)} + C_2H_5COOH_{(1)} \leftrightarrow C_2H_5COOC_2H_{5(1)} + H_2O_{(1)}$

When 7.71 mol of $C_2H_5OH_{(l)}$ and 7.37 mol of $C_2H_5COOH_{(l)}$ are reacted in a beaker, 4.80 mol of $C_2H_5COOC_2H_{5(l)}$ are present when equilibrium is established and the total volume of liquid is exactly 1.00 L

2. Calculate the K_{eq} for this system. Are the reactants or products favoured at equilibrium? Justify your choice.

3. What is the equilibrium law expression for the reaction:

$$C(s) + O_2(g) \leftrightarrow CO_2(g)$$

- A. $K_{C} = [C(s)][O_{2}(g)]$ [$CO_{2}(g)$]
- B. $K_C = [\underline{CO_2(g)}]$ $[C(g)][O_2(g)]$
- C. $K_C = [\underline{CO_2(g)}]$ $[O_2(g)]$
- D. $K_C = [O_2(g)]$ [CO₂(g)]

4. In order to shift the following reaction to the right a chemist would remove _____i ____ and add ____ii___.

 $4HCl(g) + O_2(g) \leftrightarrow 2Cl_2(g) + 2H_2O(g)$

	i	ii
a.	Chlorine	Oxygen
b.	Oxygen	Chlorine
c.	Oxygen	Hydrogen chloride
d.	Water	Chlorine

5. Consider the following hypothetical equilibrium system: QA (s) + 2 X (g) \leftrightarrow Q (l) + X₂A (g) + energy

This reaction can be shifted to increase the temperature by adding _____i and changing the volume to ____i pressure.

	i	ii
a.	X	Decrease
b.	X ₂ A	Decrease
c.	X	Increase
d.	X ₂ A	Increase

6. The condition that will favour a high concentration of $SO_{3(g)}$ for the reaction is _____i and _____ii__.

 $SO_{2(g)} + 1/2O_{2(g)} \leftrightarrow SO_{3(g)} + 96 \text{ kJ}$

	i	ii
a.	High temperature	Low pressure
b.	High temperature	High pressure
с.	Low Temperature	Low pressure
d.	Low Temperature	High pressure

7. The reaction: $X_{(g)} + Y_{(g)} \leftarrow J_{(g)}$ reached equilibrium in a closed container. A decrease in temperature causes the equilibrium to shift towards the products. The reaction can be classified as _____i in and the energy value would be placed on the _____i in _____i side of the equation.

	i	ii
a.	Exothermic	Reactant
b.	Exothermic	Product
c.	Endothermic	Product
d.	Endothermic	reactant

- 8. Given the equilibrium, $PCl_{5(g)} \leftrightarrow PCl_{3(g)} + Cl_{2(g)} K_{eq} = 0.59$. What is the equilibrium concentration of PCl_3 , given that the equilibrium concentration of PCl_5 is 0.200 mol/L?
 - a. 0.58 mol/L
 - b. 0.059 mol/l
 - c. 0.34 mol/L
 - d. 0.12 mol/L

Use the following information to answer the next question

9. Match the correct stress with each section of the equilibrium graph

1. increase temperature	2. decrease temperature
3. increase volume	4. decrease volume
5. adding $CO_2(g)$	6. removing $CO_2(g)$
7. adding Ar(g)	8. removing $O_2(g)$
Section a.	(box 1)
Section b.	(box 2)
Section c.	(box 3)
Section d.	(box 4)

- 10. The decomposition of hydrogen peroxide to produce oxygen and water is used in some contact lens cleaning procedures. A small piece of platinum is used as a catalyst for this reaction. Assuming a closed system, the purpose of the platinum is to:
 - A. Shift the equilibrium towards the reactants
 - C. Decrease the time required to reach equilibrium
- B. Alter the equilibrium concentrations
- D. Shift the equilibrium towards the products
- 11. Use Le Châtelier's principle to predict what will happen if silver nitrate is added to the following equilibrium system.

$Co(H_2O)_6^{2+}(aq) + 4Cl^{-}(aq)$	$\leftarrow \rightarrow \text{CoCl}_{4}^{2-}_{(\text{aq})} + 6\text{H}_{2}\text{O}_{(\text{l})}$
pink	purple/blue

- a. The solution will become more pink.
- b. The solution will become more purple.
- c. There will be no change to the equilibrium system.
- d. The concentration of chloride will increase.
- 12. The synthesis of ammonia is achieved world-wide through the Haber-Bosch process. Consider the following research evidence gathered for the synthesis of ammonia:

$$N_{2\,(g)} \,+\, 3\,\,H_{2\,(g)} \ \leftrightarrow \ 2\,\,NH_{3\,(g)}$$

Temperature (K)	Equilibrium Constant
	(L^2/mol^2)
500	90
600	3
700	0.3
800	0.04

According to this evidence, the synthesis reaction of ammonia from nitrogen and hydrogen is:

- a. increased by increasing the temperature
- b. decreased by increasing the pressure
- c. endothermic
- d. exothermic

13. Fill in the following chart:

Solution	[solution]	$[H_3O^+]$	[OH ⁻]	рН	рОН
HCl	2.50X 10 ⁻⁴ mol/L				

14. What is the pH a 0.25 mol/L solution of methanoic acid? (include a reaction with water and the use of the ICE chart)

15. Nitrous acid is added to a solution of potassium phosphate. Write the net ionic reaction, indicating which reaction is favored.

- 16. Ammonia is a weak base.
- Write out the equilibrium reaction and the K_b expression for a solution of ammonia
- Determine the K_b for a solution of ammonia

17. In a solution of $HCOOH_{(aq)}$, the species present in the highest concentration is:

a. HCOOH b. HCOO⁻ c. H_3O^+ d. OH⁻

18. An acid base reaction that favors the formation of products is

a. HF + HCO₃⁻ b. H₂CO₃ + NO₂⁻ c. H₂S + SO₄⁻² d. H₂SO₃ + HOOCOO⁻

19. What is the name of the unknown acid, if the concentration of the acid is 0.10 mol/L and the pH 2.39?

- a. Methanoic acidb. Phosphoric acidc. Nitric acidd. Butanoic acid
- 20. When citric acid combines with water in the mouth, one reaction that occurs is:

$$H_{3}Ct + H_{2}O \leftrightarrow H_{2}Ct^{-} + H_{3}O^{+}$$

$$1 \qquad 2 \qquad 3 \qquad 4$$

The conjugate acid base pairs are:

- a. 1,2 and 3,4
- b. 1,3 and 2,4
- c. 1,4 and 2,3
- d. none of the above

- 21. A reaction in which equilibrium favours the products is
 - A. $HSO_4^{-}(aq) + F_{-}(aq) \leftrightarrow HF_{-}(aq) + SO_4^{-}(aq)$ B. $HF_{(aq)} + H_2O_{(1)} \leftrightarrow H_3O^+_{(aq)} + F^-_{(aq)}$ C. $HF_{(aq)} + SO_4^{2-}(aq) \leftrightarrow HSO_4^{-}(aq) + F_{(aq)}$ D. $HCN_{(aq)} + F_{(aq)} \leftrightarrow HF_{(aq)} + CN_{(aq)}$
- 22. Which of the following substances is most likely amphiprotic? a. CH4(aq) b. CH3OH(aq) c. CH3COO-(aq)

d HOOCCOO⁻(aq)

d. $N_2 H_6^{2+}$ (aq)

Use the following information for the next question.

Equilibrium Equation $N_2O_4(g) + energy \rightleftharpoons 2 NO_2(g)$

 increase volume increase in NO₂(g) concentration decrease volume decrease in NO₂(g) concentration
2. decrease volume 6. decrease in $NO_2(g)$ concentration
2(0)
3. increase temperature 7. increase in $N_2O_4(g)$ concentration
4. decrease temperature 8. decrease in $N_2O_4(g)$ concentration

23. The stresses numbered above that will cause the equilibrium system to shift to the reactants are: and . (Record your answer in ascending order on the answer sheet.)

c. $N_2H_{4(aq)}$

- 24. The conjugate base of $N_2H_5^+_{(aq)}$ is a. HOH₍₁₎ b. $OH_{(aq)}$
- 25. Determine the pH for a 0.100 mol/L solution of benzoic acid. (Record your answer to three digits on the answer sheet.)

- 26. The graph plotted belongs to a titration between
 - A. HCl (aq) with NaOH (aq)
- С. HOOCCOOH (aq) with NaOH(aq)
- B. CH₃COOH (aq) with NaOH (aq)
- D. H₂S (aq) with NaOH(aq)

Use the following information to answer the **next** question.

Pyridine, $C_5H_5N_{(l)}$, is a colourless liquid. It is used as a solvent and as a						
chemical read	tant in organic synthesis. The base ion	izatio	n constant for pyridine			
is 1.8 x 10 ⁻⁹ .						
27. The	pH of a 0.10 mol/L aqueous solution o	f pyri	dine will be			
		~				
А.	10.62	С.	12.11			
B.	9.13	D.	7.72			

28. If the pH of a solution of NaCN_(aq) is 8.710, then the equilibrium concentration of CN⁻_(aq), expressed in scientific notation is, a.bc x 10^{-d} mol/L. The values of a, b, c, and d are _____, ____, and _____.

Use the following information to answer the next two questions
Para-aminobenzoic acid (PABA), is a weak monoprotic acid that is used in
sunscreen lotions. The chemical formula for PABA is $C_6H_4NH_2COOH_{(aq)}$.
It has K_a value of 1.1 x 10 ⁻⁴ .

29. When reacted with PABA, which of the following bases would produce an equilibrium that favors the reactant side?

A. $C_6H_5COO^{-}_{(aq)}$ B. $CH_3COO^{-}_{(aq)}$ C. $HCOO^{-}_{(aq)}$ D. $HCO_{3}^{-}_{(aq)}$

30. The K_b for the conjugate base of PABA is **a.b** x 10^{-cd} a b c d

Use the following information to answer the next question

31. If $HA_{(aq)}$ represents a weak acid, which of the beakers above represent solutions that have the ability to act as a buffer.

A.	Beal	ker I	and	Be	ake	r II
ъ	D 1		1	D	1	

- B. Beaker II and Beaker IV
- C. Beaker I and Beaker III
- D. Beaker III and Beaker IV

Use the following information to answer the next 3 question					
Ι	$CO_2(g) + H_2(g) \leftrightarrows CO(g) + H_2O(g)$	Keq = 0.137			
II	$CO(g) + H_2O(g) \leftrightarrows CO_2(g) + H_2(g)$	Keq = unknown			

32. If hydrogen gas is added to reaction I at equilibrium, then the concentration of the carbon dioxide will <u>i</u> and the value of the K_C will <u>ii</u>.

	-	
ROW	i	ü
Α	decrease	stay the same
В	increase	stay the same
С	increase	decrease
D	decrease	increase

33. In reaction II, the K_{eq} is ______.

Use the following additional information to answer the	next question
--	---------------

Reaction I at Equilibrium						
$[CO_2(g)]$	$[H_2(g)]$	[CO(g)]	$[H_2O(g)]$			
mol/L mol/L		mol/L	mol/L			
?	1.50	2.50	.250			

34. The concentration of CO₂(g) in reaction I at equilibrium is _____ mol/L

			Ans	wers		7	b. 25/1/2	64/10/302	
Energy Unit							-2517	DHI	- 5314.6KJ
1. 227 2. 2	314 3. 62	293 4 , 18	5. 500	6b. 9	9.32 g 7 8	a. -2657.3 $\frac{k}{m}$	<u>j</u> 5506	800	12 + 10 Hz U
8, D 9,	C 10.	B 11	l, D 12 .	В	13. A	14. A	15. A	16. 1.34	17. D
18. 6336 19.	1236 20.	30.9 21	L. 78.7						
Organic Unit									
1. A 2.	D 3.	A 4.	2753 5 .	1323	6. B	7. 2479	8. D	9. B	10. C
11. B 12.	D 13.	2346 14	I, C 15.	1345	16. B	17. B	18. 3241	19. 1214	20. 4123
21. 4613 22.	3321								
					13.	N: /N: "// A	st/As		
Electrochem	istry				a,	t	1	Ni -7	Nizie
5.A 6.D	7. C	8. 3124	4 9. C	10. C	11. B 12	.D +	-> 2/1/+	A5'-7	05.0+ 08.0+ 2 A
14. 3147 15. D	16. D	17. B	18. D	19 , B	20. 1275	t	~		ALTZ
21. C 22. B	23. B	24. A	25. 0453	26. A	27. B	е	2 A5 -	M 92	$E_{all} = +1.06$
28. C 29. D	30 , B	33. 413	6 (there is no	o #31, 32)					
Acid-Base Eq	uilibrium U	nit							
1. 1605 2.	3.08 3.	C 4.	A 5.	С	6. D	7. B	8. C	9. 4617	10. C
11. A 12.	D 13.	5.2× 10-11	[OH] рн 4.00×10 ⁻¹¹ 3	,602	рон 10.398		18. 3241	19. 1214	20. 4123
15. HNO2 1	SPOY	HNOZ	+ POy 3 2	HPOL	1-2 + N	16. 1 0_2	VH3 + Hz	N Z V	Hx + + OH F
17. A 18.	A 19.	A 20.	, B 21.	A	22. D	23. 2458	Kb =	F NH	27
24. C 25.	2.60 26 .	A 27.	B 28.	1636	29. C	30. 9111	1× -	K W	-)
31. D 32.	A 33.	7.30 34 .	3.04				Гb -	Ka	

K3 = 1.8×10-5