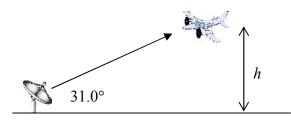
RTD Physics 30

Unit 3 Review

RTD EXAM PREP

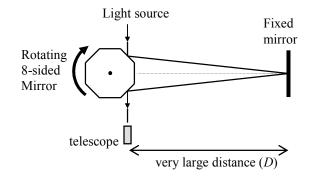
UNIT 3 REVIEW #1: EMR

Visible Radio X-rays Infrared Ultraviolet Microwave

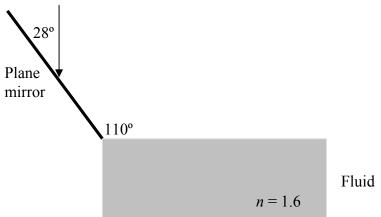

2. Consider the EMR below:

Height 14-14-14Height 14-14-14-14-14-14-14-14

Determine the period of the source vibration.

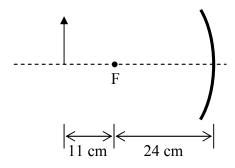

3. A radar tower sends out a signal at an angle of 31.0° above the horizontal. The signal reflects off of a plane and returns to the transmitter in a total time of 6.20 µs.

Determine the height of the plane.



4. In a Michelson experiment, an 8-sided mirror rotates at a minimum frequency of 1.10×10^5 rpm to continuously see the light in the telescope.

If the measured speed of light is 2.7×10^8 m/s, then determine the distance between the two mirrors.



5. A ray of light reflects off of a mirror and then enters into a fluid with an optical density of 1.6, as shown:

Sketch the refracted ray in the fluid. Then, determine the angle of refraction.

- 6. The critical angle for an air-gel interface is 37.0°. Determine:
 - a) the index of refraction for the gel
 - b) the time it would take light to travel through 54.0 cm of the gel
- 7. When EMR travels from a medium with a low index of refraction to a high index of refraction, determine what happens to:
 - a) its speed b) its frequency c) its wavelength
- 8. Consider an object placed in front of a mirror, as shown.
 - a) Determine the distance to the image
 - b) Is the image real or virtual? Is it upright or inverted?

- 9. A 72 cm tall object is placed 50 cm in front of a convex (diverging) mirror with a radius of curvature of 30 cm.
 - a) Determine the height of the image.
 - b) Is the image real or virtual? Is it upright or inverted?

RTD Physics 30

- 10. A converging (convex) lens has a radius of curvature of 60 cm. If the virtual image produced is 22 cm tall and 10 cm from the lens, than determine the height of the object.
- 11. An object is placed in front of a concave (diverging) lens with a focal length of 32 cm. If the image is 50% of the size of the object, then determine the distance to the object?
- 12. EMR is directed through a slit and the resulting waves are observed. Which of the following would result in the greatest diffraction?
 - a) Using microwaves or infrared light
 - b) Directing the waves through a narrow slit or a wide slit
- 13. Monochromatic, 6.20×10^{14} Hz EMR is shone through diffraction grating which is rated at 150 slits/mm. Determine the angle to the second-order maximum.
- 14. 550 nm EMR is shone through diffraction grating (distance between the slits is 8.1 μ m). If the distance from the grating to the screen is 90 cm, determine the distance between maxima. <u>Note</u>: Assume $\theta < 10^{\circ}$.
- 15. 430 nm EMR is shone through diffraction grating that is 27 cm from the screen and the distance between the maxima is 12 cm. Determine the distance between the slits.
- 16. Two microwave transmitters are placed side by side, each emitting EMR in phase with a frequency of 7.5 GHz. If a receiver is placed 12 cm from one transmitter and 18 cm from the other transmitter, would there be a strong signal? Explain.
- 17. Which of the following properties gives convincing evidence that EMR behaves like a wave (and not a particle)?

patterns of refraction	travels through a vacuum
polarization	travels at 3.00×10^8 m/s
law of reflection	diffraction

RTD Physics 30

SOLUTIONS

1.	Radio Microwave Infrared Visible Ultraviolet X-Rays	
2.	$\lambda = 27 \ \mu m$; $f = 1.111 \times 10^{13} \ Hz$; $T = 9.0 \times 10^{-14} \ s$	
3.	Distance from plane to dish: 930 m ; $h = 479$ m	
4.	$f = 1833.33 \text{ Hz}$; $T = 5.4545 \times 10^{-4} \text{ s}$; $D = 9.2 \text{ km}$	
5.	a) See diagram. b) 24° 28°	
6.	a) 1.66 b) $v = 1.8054 \times 10^8 \text{ m/s}$ $t = 2.99 \times 10^{-9} \text{ s}$ Plane mirror 28° θ_1 110° 41° $n_1 = 1$	
7.	a) Speed decreases b) Frequency stays the same c) Wavelength decreases Fluid P_2 $n_2 = 1.6$	
8.	a) 76 cmb) Real and inverted	
9.	a) $d_i = -11.538 \text{ cm}$; $h_i = 17 \text{ cm}$ b) Virtual and upright	
10.	$d_o = 7.5 \text{ cm}$; $h_o = 17 \text{ cm}$	
11. 32 cm		
12.	a) Microwaves b) Narrow slit	
13. $\lambda = 4.8387 \times 10^{-7} \text{ m}$; $d = 6.6667 \times 10^{-6} \text{ m}$; $\theta = 8.35^{\circ}$		
14. 6.1 cm		
15. $\theta = 23.96^{\circ}$; $d = 1.1 \mu\text{m}$		
16.	$\lambda = 4.0 \text{ cm}$; Destructive interference, so weak signal.	
17.	refraction ; polarization ; travels at 3.00×10^8 m/s ; diffraction	

